
Cost Effective Ontology Population with Data
from Lists in OCRed Historical Documents

Thomas L. Packer
Brigham Young University

Provo, Utah, USA
tpacker@byu.net

David W. Embley
Brigham Young University

Provo, Utah, USA
embley@cs.byu.edu

Abstract—A method of automatically extracting facts from
lists in OCRed documents and inserting them into an ontology
would contribute to making a variety of historical knowledge
machine searchable, queryable, and linkable. To work well, such
a process must be adaptable to variations in list format, tolerant
of OCR errors, and careful in its selection of human guidance. We
propose ListReader, a wrapper-induction solution for information
extraction that is specialized for lists in OCRed documents.
ListReader can induce either a regular-expression grammar or
a Hidden Markov Model. Each can infer list structure and field
labels from OCR text. We decrease the cost and improve the
accuracy of the induction process using semi-supervised machine
learning and active learning, allowing induction of a wrapper
from almost a single hand-labeled instance per field per list.
After applying an induced wrapper, ListReader automatically
maps the labeled text it produces to a rich variety of ontologically
structured predicates. We evaluate our implementation on family
history books in terms of the typical F-measure and a new metric,
“Label Efficiency”, which measures both extraction quality and
cost in a single number. We show with statistical significance
that ListReader reaches values closer to optimal levels than a
state-of-the-art statistical sequence labeler.

I. INTRODUCTION

Family history books and other machine-printed documents
present much of their valuable content in data-rich lists.
As one example, the 85,000+ family history books scanned,
OCRed, and placed on-line by FamilySearch.org are full of
lists containing hundreds of millions of fact assertions about
people, places, and events. As an example, Figure 1 shows
lists of the children in two families found on page 154 of
The Ely Ancestry [3]. These lists make many assertions about
family relationships and life events. Our goal is to develop a
process to extract the diverse kinds of facts from lists in OCRed
documents that is robust to OCR errors and relies on as little
human effort as possible. In particular, we are concerned with
cheaply extracting rich ontological facts from printed lists in
which the up-front cost of extracting information is as low as
possible.

To be most useful to downstream search, query, and data-
linking applications, the knowledge extracted from text should
be expressive and well structured. Ontologies are machine-
readable, mathematically specified conceptualizations of a
collection of facts. They are expressive enough to provide a
framework for storing more of the kinds of assertions found
in lists than the typical output of named entity recognition
and most other information extraction work. If we could
populate user-specified ontologies with predicates representing
the facts asserted in OCRed lists, this more expressive and

Fig. 1. Lists in The Ely Ancestry, Page 154

versatile information could better contribute to a number of
applications in historical research, database querying, record
linkage, automatic construction of family trees, and question
answering.

We propose ListReader, a robust, general, and cost-
effective solution to the challenge of extracting diverse types
of facts from lists in OCRed documents. ListReader populates
a user-defined ontology with assertions found and labeled
automatically. A ListReader user constructs an ontology for
a list by building a data-entry form in a custom web interface
and fills in the form with the information from the first record
of a list. ListReader induces a wrapper and automatically gen-
eralizes it to extract asserted information from the remaining
records of the list. Only when ListReader encounters a new
field in a later record should it ask the user to update the form
to accommodate the new field and insert the field value to
provide additional training data. This is the minimum amount
of effort conceivable as the user begins a new knowledge
extraction project in a new domain and document genre,
with no previously assembled resources. After ListReader has
begun inducing grammars and extracting information from a
document, it can switch into a self-supervised mode in which
it uses its store of knowledge to effectively label its own
training data for other lists, potentially removing the human
user from the process. In this paper we focus only on inducing
wrappers from scratch—a process we call semi-supervised
wrapper induction. We leave self-supervised wrapper induction

for future work.
Wrapper induction is the automated process of construct-

ing a model (i.e. a grammar) that can extract data from a
source document and present it in a uniform format [13].
Each induced wrapper is specifically designed for one data
source among many, making it potentially more accurate than
applying a single, general model to all of the data sources.

Most work in wrapper induction is specialized for machine-
generated HTML pages, although there are a few projects
that target lists in HTML documents [9], [10], [14]. The
focus on HTML input is reflected in these works’ choices in
wrapper formalism, which include the following: sets of left
and right field context expressions [2], [13], xpaths [8], finite
state automata [14], and conditional random fields [9], [10].
These formalisms generally rely on consistent landmarks that
are not available in OCRed lists for three reasons: OCRed
list text is less consistently structured than machine-generated
HTML pages, OCRed text does not contain HTML tags, and
field delimiters and content in OCRed documents may contain
OCR and typographical errors.

Though not commonly identified as wrapper induction,
certain research in extracting information from OCRed printed
lists fits our definition and targets input that is similar to
our own. Most of this work limits itself to certain kinds of
input lists and in applying induction processes that are less
adaptable and scalable than our proposal. Belaı̈d [4], [5] and
Besagni, et al. [6], [7] extract records and fields from lists of
citations, but rely heavily on hand-crafted knowledge that is
specific to bibliographies. Adelberg [1] and Heidorn and Wei
[12] target lists in OCRed documents in a general sense. They,
however, use supervised wrapper induction that we believe is
less adaptive or scalable than our proposal when encountering
the “long tail” of list formats. They do not evaluate cost
in combination with accuracy as we do. Also, the extracted
information is limited in ontological expressiveness, which is
true of all existing work in wrapper induction of which we are
aware.

We make the following contributions. (1) After an overview
of ListReader in Section II-A, we establish a formal corre-
spondence among list wrappers, ontologies, data-entry forms,
and in-line annotated text (Section II-B). This correspondence
provides the data flow for a processes in which a user can eas-
ily annotate OCRed text as training data for wrapper induction
and create a new ontology schema. It also enables even simple
induced wrappers that produce in-line or sequentially labeled
text to extract rich facts from lists and insert them into an
expressive ontological structure. This effectively reduces the
ontology population problem to a sequence labeling problem.
(2) We introduce the discovery of new fields in semi-structured
text as a novel application of active learning (Section II-C).
(3) We demonstrate the induction of wrappers using two
formalisms—regular expressions (Regex) (Section II-D) and
Hidden Markov Models (HMM) (Section II-E). We show that
each can be adaptive to record structure variations such that
only about one human-provided label per field is required. We
also show that an ensemble of the two wrappers can improve
accuracy. (4) We evaluate extraction accuracy combined with
the cost of human effort and show with statistical significance
that ListReader reaches values much closer to the optimal
level than a general, state-of-the-art information extraction
system (Section III). We also separately evaluate how complete

and concise ListReader’s active-learning queries are, showing
that it does well with the 60 randomly-chosen child lists
in our evaluation set taken from the The Ely Ancestry [3].
(5) We conclude that we can benefit from the ListReader
line of research and identify opportunities for future research
(Section IV).

II. LISTREADER

A. Overview

ListReader1 populates an ontology from lists in OCRed
text as follows:

First, a user selects an OCRed image (e.g. a two-layer PDF
file) that contains a list (e.g. Figure 1), spots a list and, with
ListReader’s form interface, constructs a form for the data
fields in the first record of the list and fills in the form with text
from its first record. For example, supposing the spotted list
is the second child list in Figure 1, the user would construct
the form in Figure 2 and fill it in by clicking on the words in
the PDF document for each field in the form.

Second, from the empty form, ListReader creates the
schema of an ontology (e.g. Figure 3).

Third, ListReader uses the information obtained from the
filled-in form to label the fields within the OCRed text as
training data. Figure 4 shows the labeled text for our example.

Fourth, ListReader induces a wrapper based on the
partially-labeled OCR text, starting with the hand-labeled ini-
tial record. It looks for record structure variations in subsequent
records of the list, adjusting its wrapper if necessary and asking
for user input when it encounters a field not present in the first
record.

Finally, the induced wrapper labels the remaining records
in the list with labels like those provided in its training data.
ListReader translates the labeled text into predicates to insert
into the ontology.

B. Automatic Mappings

To automate much of ListReader processing, we establish
mappings among three types of knowledge representation:
(1) HTML forms (e.g. Figure 2), (2) ontology structure (e.g.
Figure 3), and (3) in-line labeled text (e.g. Figure 4). The
mappings establish a one-to-one correspondence among nested
form elements, paths in an ontology graph, and path expres-
sions in text labels. Consider, for example, the birth year
“1772” in the child record for Samuel in Figure 1. In the filled-
in HTML form in Figure 2, “1772” is in the Year field, which
is nested under the BirthDate field, which is at the top level of
nesting under the form title Person. This entry in the form
generates object and relationship instances in the ontology
structure in Figure 3: an object identifier to represent Samuel in
the object set Person, which relates to another object identifier
to represent Samuel’s birth date in the object set BirthDate,
which relates to the text string “1772” in the lexical object set
Year. In-line labels on fields in text identify these same paths;
thus the label for “1772” in Figure 4 is Person.BirthDate.Year.

1We have written all the algorithms discussed in this paper from scratch
in the Java programming language, using only the libraries typically included
in a Java installation, such as the regular expression package for executing a
given regular expression on a given text string.

Fig. 2. Filled in Form for Samuel Holden Parsons Record

Fig. 3. Initial List Ontology for Samuel Holden Parsons List

Because ListReader marks text with labels that have a one-to-
one correspondence with the form and ontology for the list,
ListReader’s post-processor can fill in the form for the list or,
as in our implementation, directly populate the ontology with
objects and relationships just as the process that populates the
ontology from a manually filled-in form does.

The metaphor of form fill-in for obtaining information is
familiar to most users, as is form creation from the basic
set of primitives we provide. Our form primitives include the
following: a single-entry blank to accept single values (e.g.
the birth year “1772” in Figure 2), a multiple-entry blank to
accept multiple entries (e.g. in the Name field in Figure 2, the
three entries “Samuel”, “Holden”, and “Parsons”), and radio
buttons and check boxes to respectively accept one role or
several role designations (e.g. the radio button to designate
the Child role of Person in Figure 2). The nesting of form
elements provide for relationships among the form elements
whose leaf elements are for text objects. Elements with the
same name may appear in more than one place in the form,
allowing for non-tree-shaped ontologies. The title of the form,
Person in our example, designates the main object—the object
the record describes.

An ontology, rendered as a rooted graph, contains nodes
(concepts or sets of objects) and edges (sets of relationships
among objects). Nodes may also represent entire concept

<Child.ChildNumber>1</Child.ChildNumber>.
<Person.Name>Samuel</Person.Name>
<Person.Name>Holden</Person.Name>
<Person.Name>Parsons</Person.Name>
, b. <Person.BirthDate.Year>1772</Person.BirthDate.Year>
, d. <Person.DeathDate.Year>1870</Person.DeathDate.Year>
, m. <Person.Spouse.SpouseName.FirstName>Elizabeth
</Person.Spouse.SpouseName.FirstName>
<Person.Spouse.SpouseName.Surname>Sullivan
</Person.Spouse.SpouseName.Surname>.

Fig. 4. Labeled Samuel Holden Parsons Record

categorization hierarchies. One object set is designated the
primary object set. It represents the concept that the list is
about, with each record representing a member of that concept.
From these ontology primitives ListReader can construct and
fill in schemas with the following five points of expressiveness:
(1) textual vs. abstract entities (e.g. Name(“Elias”) vs. Per-
son(p1)), (2) n-ary relationships among two or more entities
instead of strictly unary or binary relationships (e.g. Husband-
married-Wife-in-Year(p1, p2, “1771”)), (3) ontology graphs
with arbitrary path lengths from the root instead of strictly
unit-length as in named entity recognition or data slot filling
(e.g. Person.Spouse.SpouseName.Surname), (4) functional and
optional constraints on relationship sets (e.g. A person has one
birth year and one death year and a particular year may be one
or the other but not necessarily both), and (5) concept catego-
rization hierarchies, including, in particular, role designations
(e.g. Child isa Person).

In-line labeled text refers to the OCRed text annotated with
XML-like tags or labels. Each label represents a field as a
path in the ontology graph. The path starts at the primary
object set, or, in the case when the primary object set is a
concept hierarchy, at any concept in the hierarchy. The path
ends at the lexical object set for the field whose text is labeled.
We denote a graph path through all binary edges by a dot-
separated sequence of one or more object-set names. When
mapping from labeled text to a populated ontology, field labels
denote object and relationship instantiations as follows. Each
non-lexical object-set name s in a label path corresponds to a
non-lexical object o instantiated in s. If s is a specialization, o
is also instantiated in all of ss ancestors up to the root of the
concept hierarchy. For each lexical object set s that appears
at the end of a path, the labeled string, itself, is inserted as a
member of the object set s. Non-lexical object set names of
fields within the same record correspond to the same object
for the entire record. For relationship sets, the path among the
objects designated by the label path instantiate relationships
that connect the objects.

C. Actively Learning Novel Structures
Active learning is a technique within the field of machine

learning to reduce the cost of obtaining labeled training data.
The learning system, itself, actively identifies a smaller set
of examples whose labels would provide greater utility than
a randomly selected set. We may distinguish among active
learning methods by their query policies, many of which are
described in [16]. These sampling policies all assume that the
learning system already knows all candidate labels; querying is
a matter of reducing the uncertainty about which one of these
known labels should be applied to the unlabeled examples.

In our application, we introduce a new assumption to drive
active learning, namely that not all labels are known to the

system at the time of a query and that the most helpful query
policy is one that is primarily based on novelty detection in
that it identifies new structures for which a label is most
likely unknown. We are concerned with reaching the minimum
possible number of labeled examples which is exactly one
label per field. In Sections II-D and II-E we explain how
to identify new fields using ListReader’s regex and HMM
wrappers respectively. The basic idea in both cases is to
identify when two records are structurally similar to each other
except for the insertion of a new field at some identifiable
position in one of the two records.

For example, comparing the first and second records in
the second list of Figure 1, ListReader recognizes that the
year of Elizabeth’s marriage to Edward (“1801”) is a new
field and asks for its label. When asked for a label for some
identified text, a user responds by altering the form for the list,
adding a new entry blank for the field, and filling in this text
box by clicking on the appropriate string within the PDF. For
the marriage-year example here, the user could add a single-
entry blank called MarriageYear to the end of the form in
Figure 2 and click on “1801” in the list in Figure 1 (which
in our implemented interface sits side-by-side on the screen
with the form). This, in turn, alters the ontology in Figure 3,
adding a new object set MarriageYear and a new functional
relationship set from Person to Person to MarriageYear. It
also provides a new path expression Person.MarriageYear for
labeling “1801”. Alternatively, the user could connect the new
MarriageYear field with the Spouse field to create a double-
column multiple-entry blank, which would produce a ternary
relationship involving the person, the spouse, and the marriage
date. The SpouseName field in Figure 2 would be nested inside
of Spouse, the first of the two columns. The user would also
need to click on “1801” to copy it into the first slot of the
MarriageDate column.

D. Adaptive Regex Induction

ListReader induces a regex wrapper in three steps: initial-
ization, A∗ search, and active learning.

During initialization, ListReader begins learning from noth-
ing more than the text of an OCRed page with the fields of the
first record of a list labeled. ListReader initializes a new regex
to model the text and labels of the first record using a flat
sequence of capture groups. Each capture group corresponds
to a field or delimiter. Consider, for example, the following
labeling of the first record of the first child list in Figure 1:

<Child.ChildNumber>1</Child.ChildNumber>.
<Person.Name>Andrew</Person.Name>,
b. <Person.BirthDate.Year>1772</Person.BirthDate.Year>.

From this labeling, ListReader generates the initial regular
expression (regex) in Figure 5, a first level generalization of
the field delimiters and content.

During A∗ search [11], ListReader generalizes the initial
wrapper to produce a set of regexes, one for each record type.
That is, ListReader performs an A∗ graph search once for
each line of text below the first record. (ListReader conducts
no search if a known regex already matches a record.) Each
search traverses a hypothesis space whose nodes are regexes
and whose edges are edit operations transforming one regex
into another. ListReader uses the first record of the list as the
start state in all searches within the same list. Goal states

Final Regex
Label (abbrev.) Initial Regex RecordType1 RecordType2
RecordDelimiter (\n) (\n) (\n)
ChildNumber (\d) (\d) (\d)
FieldDelimiter (\.\s) (\.\s) (\.\s)
Name (\w{6,6}) (\w{5,9}) (\w{5,9})
FieldDelimiter (\s)
Name (\w{3,8})
FieldDelimiter (,\sb\.\s) (,\sb\.\s) (,\s[bh]\.\s)
BirthDate.Year (\d{4,4}) (\d{4,4}) ([i0-9]{4,4})
FieldDelimiter ([.,]\sd\.\s)
DeathDate.Year (\d{4,4})
FieldDelimiter (\.) (\.) (\.)
RecordDelimiter (\n) (\n) (\n)

Fig. 5. Regex Induction for First Child List in Fig. 1

are defined as any regex that matches the entire text of an
unlabeled record—the record on which search is performed.
The purpose of the search is to find the goal regex with the
shortest edit distance from the initial regex.

To generate one regex from another, ListReader applies
one of four operators to one capture group position. The
operators are insertion, deletion, character class expansion, and
word length expansion. The insertion operator inserts a one-
word capture group of high generality, e.g. “\S{1,10}”, with
“Unknown” as its field label. The deletion operator deletes a
capture group. The two expansion operators allow a child regex
to match a larger class of text than its parent. The character
class expansion operator, when applied to a field capture
group, moves its text up a shallow hierarchy of character
classes, e.g. changing “\w{6,6}” to “\S{6,6}”. The character
class expansion operator, when applied to a delimiter capture
group, replaces each character in its text with a predefined
set of common OCR error substitutions, e.g., it replaces “[.]”
with “[.,]”. The word length expansion operator is not used
for delimiters, but for fields it expands the upper and lower
length bounds of a word by a predetermined increment, e.g.,
it replaces “\w{6,6}” with “\w{4,9}”.

To control the enormously large search space—millions of
states for our small example and hundreds of billions of states
for larger ones in our test set—we use an A∗ search strategy
with a carefully designed admissible heuristic. A ListReader
A∗ search iterates over a priority queue of regular expressions.
ListReader initializes the queue with a regex based on the
initial labeled record (e.g. the Initial Regex in Figure 5). On
each iteration, the highest-priority regex, r, is dequeued and
expanded, meaning that adjacent regexes are generated and
added to the queue. The priority2 of r is f(r) = g(r) + h(r).
The g(r) term is the known edit distance from the initial regex
to r and the h(r) term is an admissible heuristic estimate of
r’s remaining distance to a goal. A∗’s use of f(r) results in
searching paths with the lowest estimated total length. To be
admissible, h(r) must never over-estimate the true distance to
the nearest goal, ensuring a valuable property of A∗ search as
a whole: it is guaranteed to find the closest goal state first.
This makes the search stopping criteria straightforward and
the search optimal given the heuristic function. Edit distance
is the sum of the edit costs of each operator used to convert

2Low values have high priority

one regex into the other. We set the base cost of all operators
to 1.0, and we add 0.1 for deletions and insertions that do not
occur immediately adjacent to other deletions and insertions,
respectively.

Our admissible heuristic h(r) must estimate the remaining
distance to the nearest goal from any intermediate regex. Two
main ideas guide our heuristic: eliminate redundant search
paths and infer how many operator instances are required to
convert r into a goal given knowledge of which constituents of
r “miss”—do not match with the text being considered. The
heuristic we use is the sum of three terms:

h(r) = ordero(r) +matcho,t(r) +missCountt(r)

When an operator is assigned to a specific capture group
position within r, we call it an operator instance o. The text
t is the text of the current record.

The first term, ordero(r), is infinite if o was applied to r
“out of order”, and zero otherwise. The same set of operators
will ultimately produce the same goal states regardless of
their order of application if those operator instances can be
applied independently of each other. To generate the Record-
Type2 regex from the Initial Regex in Figure 5, for example,
ListReader could have inserted new capture groups after Name
and after BirthDate.Year in either order. Such arbitrariness
produces a much larger branching factor for a search space
than is necessary for finding the goal state. The ordero(r) term
imposes a single left-to-right order of all operator instances that
can be applied independently of each other.

The second term, matcho,t(r), is infinite if o targets
a hitting minimal constituent in r, and zero otherwise. A
constituent c is any contiguous subsequence of one or more
capture groups within r. A constituent hits when it matches
at least one substring of t. A constituent misses if it fails to
hit. A minimal constituent is any constituent in r of length l,
where l is the size of the smallest constituent in r that misses.
The matcho,t(r) term restricts applications to constituents that
miss, testing constituents against t from small to large until we
find a minimal missing constituent. Minimal constituents that
already hit need not be targeted as a location of an operator
until we attempt to resolve neighboring missing constituents.
For example, the Name field in the InitialRegex in Figure 5
misses when applied to the fourth record in Figure 1 because
its length must be generalized. Also, the constituent composed
of that Name field plus the following field delimiter also
misses, because a second Name field must be inserted between
them. However, ListReader cannot recognize the need of the
second edit (without extra trial and error) until each of its
component capture groups has become generalized enough to
hit. The matcho,t(r) term provides the most specific location
information possible about where the edits might need to
happen next to make progress toward a goal state.

The third term, missCountt(r), gives an admissible
heuristic estimate of the number of edit operations needed to
reach a goal state. It counts the number of non-overlapping
minimal constituents that miss. This is the tightest admissible
heuristic we are aware of for this problem. It is not possible
to infer the exact number of edits required considering that, if
a constituent of r misses, we can only be sure that at least one
of its capture groups must be edited by at least one operation.

More than one edit may be necessary at the same location, but
the necessity of a second edit is not apparent until after the
application of the first fails to produce a hit. Moreover, it is
often not apparent where a small constituent should hit without
testing a larger constituent with more context. Therefore, we
test constituents from smallest to largest.

The last of ListReader’s three steps is active learning.
ListReader queries the user by highlighting the text matched
by an Unknown-labeled capture group. The user may then
modify the form, which provides a new field label and updates
the ontology, and then copy the part of the highlighted text
that constitutes the field value into the new form field. With
the information returned by the user, ListReader creates a
new regex consisting of the old regex with the Unknown
constituent replaced by a new constituent initialized with the
newly labeled text. ListReader queries the user once for each
inserted constituent among its set of regexes.

After producing a Regex wrapper (e.g. the Final Regex
in Figure 5 as a disjunction of RecordType1 and Record-
Type2), ListReader executes each record type regex against
the unlabeled text, removing segments of text as they match.
ListReader uses the labels applied by the regex wrapper to
the field text of each record to instantiate the ontology for
the list by creating objects and relationships as described in
Section II-B.

E. Adaptive HMM Induction

An HMM:

P (S1:T , Y1:T) = P (S1)P (Y1|S1)

T∏
t=2

P (St|St−1)P (Yt|St)

represents the joint probability of a sequence of T hidden states
S1:T and T corresponding observable state emissions Y1:T .
The HMM parameters are probabilities in three groups: the
marginal probabilities of the first state in the sequence, P (S1),
the transition model containing the conditional probabilities of
one state given a previous state, P (St|St−1), and the emission
model containing the conditional probabilities of an emission
given a state, P (Yt|St). We can set the HMM parameters using
maximum likelihood estimation (MLE) from a hand-labeled
sequence of observations. Given such a model, we can use the
Viterbi algorithm to compute the most probable sequence of
states given a new sequence of observations.

For ListReader, we begin by modeling each word in the
text as a member of Y using a multinomial distribution and
each field label as a member of S. During initialization,
ListReader collects word and label co-occurrence statistics
from the first hand-labeled record and trains the HMM using
MLE except for modifications to make the most of sparse data
and appropriately model the structure of list text. Figure 6
shows an HMM initialized for the first record of the first
list of Figure 1. Solid lines represent transition or emission
distributions trained with whole single counts from the hand-
labeled record, and dotted lines represent transitions trained
with fractional counts (non-zero Dirichlet priors). We omit
emission model parameters with non-zero priors in this figure
for simplicity.

To make the most of our very sparse training data, we
employ three techniques. First, we apply a non-zero Dirichlet

Fig. 6. HMM Initialized for the First Record in Figure 1.

prior to all parameters that should be non-zero using knowl-
edge of how list text behaves. Dirichlet priors are a versatile
form of parameter smoothing that amounts to adding fractional
pseudo-counts to the training data where prior knowledge
dictates. For example, even though we do not see a 10-
character-long Name in the first record of Figure 1, we know
that such a name could exist if we had more training data.
We do not want the probability of such a name to be zero.
ListReader uses a prior of one divided by the number of words
in the list for all words emitted from all states except the
RecordDelimiter state which can only emit a record delimiter
character for the lists we consider.

Second, we use parameter tying in the emission model
to force certain states to pool statistics and therefore share
a multinomial distribution. The states whose parameters we
tie are, conveniently, those fields whose labels share the same
lexical object set name. Since field labels contain a path
in the ontology graph including a leaf node that represents
which lexical object set the field text is assigned to, we can
use that information as a semantic basis for parameter tying.
For example, the emission models for BirthDate.Year and
DeathDate.Year share emission parameters.

Third, we conflate words from how they naturally appear
before performing MLE or applying a trained model to text. To
conflate a word, we replace each of its characters with a unique
symbol representing which of five character classes it belongs
to: uppercase letters, lowercase letters, digits, punctuation, and
whitespace. These are represented as regular expressions in
Figure 6. Word conflation provides a good balance between
discrimination and robustness. Word conflation and smoothing
also help allow for OCR and other errors. To avoid drift, we
do not further conflate words or adjust word lengths within
the emission model beyond the conflated hand-labeled text
described here as induction proceeds.

To appropriately model the structure of list text, we modify
the HMM in three additional ways. First, we constrain the
transition model to have a simple cyclical structure. That is,
we avoid transitions from a state to itself and other arbitrary
transitions by creating an expanded set of states. This set
not only contains separate states for non-list text, record
boundaries, field delimiters, and each of the user-specified field
labels, but also separate states for individual positions within
the word-sequence of each category (hence the numeric state
label suffixes in Figure 6). These distinct states allow us to give
our HMM a strict linear structure from one record delimiter to
the next and prevent erroneous loops and short-cuts through the
state graph. To produce a precise cyclical structure, we allow
the record delimiter state to transition from only the pre-list
text state and the last state of a record and to transition to
only the first state of the record and the post-list text state.

Fig. 7. New HMM Components (Shaded) after Active Learning for Second
Name Field.

Second, we loosen the rigid transition model just enough
to allow for deletions and insertions. To allow for deletions,
we employ parameter smoothing in the transition model, but
only for pairs of states obeying the “total order” specified by
the training data. For example, we give a non-zero prior to the
Name-BirthDate.Year transition and a zero prior to the Birth-
Date.Year-Name transition. To allow for insertions, we add
unique Unknown states between each field or delimiter state
in the HMM, giving higher priors to Unknown states that sit at
key positions, such as the beginning and ending of delimiters,
where knowledge of list structure suggests insertions are more
likely to occur. For example, consider applying the HMM in
Figure 6 to the fourth record of the first list in Figure 1. The
text “4. ” is exactly what the state sequence ChildNumber.1.1,
Delimiter.1.1, and Delimiter.1.2 expects. Also, the text “, b. ” is
exactly what the state sequence Delimiter.2.1 to Delimiter.2.5
expects. However, the Name state does not expect any of the
three intervening tokens “William”, “ ”, or “Lee”. Neither of
the names are of the expected length and the space is not of the
expected character class. However, because of smoothing in the
emission models of the intervening states, the Name state will
match “William” and the state Unknown.5 will match “ Lee”.
This is the most likely sequence of matching states because
Unknown.5 appears at the beginning of a long sequence of
delimiter states and is therefore given a higher Dirichlet prior.
Therefore, ListReader labels “ Lee” as Unknown.

Third, we model the distinct variability behavior of delim-
iter and field text in the emission model. Since delimiter text
varies less than field text, we prevent ListReader from applying
the word conflation described above to any word types found
in a known field delimiter. For example, given the delimiter
before the birth date in the first record of Figure 1, we prevent
the word types “,”, “ ”, “b”, and “.” from being conflated
wherever they appear in the page, leaving them as they are.

During active learning, ListReader queries the user for the
labels of each Unknown-labeled piece of text. For each query,
ListReader trains a new HMM fragment on the newly-labeled
text using MLE and the six modifications just described. It

TABLE I. METRICS

Precision = p = tp
tp+fp

Savings = s = u
u+l

Recall = r = tp
tp+fn

Efficiency = wp+wr+ws
wp
p

+
wr
r

+
ws
s

F-measure = wp+wr
wp
p

+
wr
r

tp = true positives, fp = false positives, fn = false negatives
u = Number of fields left unlabeled by the user
l = Number of user-labeled fields
wx = Weight for component x in weighted harmonic mean

inserts this HMM fragment into the original HMM at the same
position as the matching Unknown state. The probability of the
transition entering a new HMM fragment is split with the orig-
inal transition bypassing the new fragment. It then executes the
whole HMM to identify other Unknown-labeled text covered
by the new HMM fragment before querying the user again.
Figure 7 shows a fragment produced after querying the user
about “Lee”. After performing active learning on the whole
first list of Figure 1, the HMM in Figure 6 is almost twice
as long, containing new states for Name, DeathDate.Year,
delimiter text before each, and nine new Unknown states. When
no Unknown text remains, ListReader translates labeled fields
to instantiated predicates and inserts them into the ontology as
explained in Section II-B.

III. EXPERIMENTAL EVALUATION

A main objective of developing ListReader is to find a way
to simultaneously reduce the cost and increase the accuracy
of inducing wrappers for lists by taking advantage of list
structure. In this light, we evaluate ListReader using the typical
accuracy metrics of precision, recall, and F-measure, but also
using measurements of human labeling cost. For this second
objective, we propose three metrics: Label Savings, Label
Efficiency, and Active Learning Query F-measure. We give
precise formulas in Table I. Precision is the proportion of field
labels produced by the system that are correct. Recall is the
proportion of correct field labels that the system produces. F-
measure is the harmonic mean of precision and recall. Label
savings is the proportion of field labels left unlabeled by
the user. For example, in the first list in Figure 1, there
are 25 fields. If the user labels only the three fields in the
first record (Child.ChildNumber = “1”, Person.Name = “An-
drew”, Person.BirthDate.Year = “1772”), the savings would be
22/(22 + 3) = 88%. Label efficiency is the harmonic mean
of precision, recall, and savings. For both F-measure and label
efficiency, we use weights of 1.0, although the weights can be
different depending on application needs. Finally, to compute
query F-measure, we use the F-measure formula in Table I
based on counts of the following ListReader behaviors: tp =
ListReader queries the user when it should (once per field type
per list), fp = ListReader queries when it should not, and fn =
ListReader fails to query when it should.

A key part of ListReader is a machine-learned sequential
labeler. The wrapper formalism listed in Section I that should
be most capable of modeling text in OCRed lists is the
Conditional Random Field (CRF), which is a general approach
to sequence labeling, achieving state-of-the-art performance
in a number of applications. Therefore, we have chosen to
compare ListReader to a CRF [15]. To make our labeling

TABLE II. ONTOLOGY POPULATION COST EFFECTIVENESS (%)

Prec. Rec. F1 Sav. Eff.
ListReader A∗ Regex 96 85 90 71 83
ListReader HMM 93 92 93 70 84
ListReader Ensemble 94 94 94 66 82
CRF Best F1 93 92 92 43 67
CRF Best Efficiency 83 72 77 79 78
Bold: column max or not sig. lower, p < .01, paired t-test

task learnable by the CRF, to reduce over-fitting the training
data, and generally to ensure a fair test, we tuned its hyper-
parameters and selected an appropriate set of word features on
a subset of our data. The features we used were (1) the word
text itself, and flags indicating which of the following dictio-
naries the word appears in: (2) given names, (3) surnames,
(4) common words with functional part-of-speech including
articles, prepositions, and auxiliary verbs, (5) numerals, and
(6) initials (a capital letter followed by a period). We also
applied the features of immediate neighbors to each token to
provide contextual clues. Our dictionaries are large and have
good coverage and constitute a greater amount of knowledge
engineering than we allow for ListReader.

As test data, we randomly selected sufficient pages from
The Ely Ancestry [3] to obtain and isolate the text of 60
child lists. These lists contain 3088 non-space word tokens
with 1254 field strings to be identified and extracted. Each list
contains between 1 and 12 records for a total of 271 records,
with records containing a minimum of 2 fields and a maximum
of 12 fields with an average of 4.6 fields per record.

To test ListReader accuracy and cost, we hand-labeled the
first record of each list and ran ListReader on the list in three
variations—A∗ Regex ListReader as described in Section II-D,
HMM ListReader as described in Section II-E, and a simple
Regex-HMM ensemble in which, for each record in a list,
we take the A∗ Regex result if there is one, and the HMM
result otherwise. We also ran the CRF separately on eachlist
with six variations of labeled training data: the first n and the
“best” n records in the list (1 ≤ n ≤ 3), where “three best”
is a combination of a longest (1st Best), a least typical (2nd
Best), and a most typical (3rd Best) record. From these six,
we report here only the two most competitive: the CRF with
the best F-measure and the CRF with the best label efficiency.

Table II gives the results for the measures over all 1254
field values to be extracted from the lists, including both
those labeled by the user and those labeled by ListReader.
The results in Table II tell us what accuracy we can expect
for the extraction task as a whole and at what cost. Use of
the ensemble, which achieves the best accuracy, is motivated
by the observation that A∗ Regex’s precision is high when
it reaches a goal state but that its recall is low because it
sometimes fails to reach a goal state and thus returns no labels
for any of the fields in the record.

Table III gives the results when the measures are over
just the field values to be labeled by the systems—excluding
all hand labeling. These results tell how well the systems
generalize from the labeled examples. Over the six CRF
variations, not until trained with the “best three” records does
the CRF’s F-measure approach ListReader’s. But in this case,
it is achieved with a labeling efficiency that is much less; plus

TABLE III. WRAPPER INDUCTION LEARNING ACCURACY (%)

Prec. Rec. F1

ListReader A∗ Regex 95 80 87
ListReader HMM 89 88 89
ListReader Ensemble 92 93 92
CRF Best F1 83 79 81
CRF Best Efficiency 77 63 69
Bold: column max or not sig. lower, p < .05, unpaired t-test

TABLE IV. ACTIVE LEARNING USER QUERY ACCURACY (#, %)

tp fp fn Prec. Rec. F1

ListReader A∗ Regex 66 34 17 66 80 72
ListReader HMM 58 45 25 56 70 62

there is also some human effort involved to select the “three
best”.

Table IV measures how well A∗ Regex ListReader and
HMM ListReader do at detecting new fields which is our basis
for active learning. The 60 lists included 83 opportunities for
active learning queries. Table IV shows how many times each
ListReader variation asked when it should have (tp), asked
when it should not have (fp), and failed to ask when it should
have (fn), as well as the query precision, recall, and F-measure.

IV. CONCLUSIONS AND FUTURE WORK

These results suggest that ListReader is a viable way to
populate rich ontological structures with data from lists in
OCRed historical documents. We can confidently anticipate
(p < .01) that for Ely child lists (and likely for the thousands
of similar lists in family history documents), we can extract
the information of interest with an F-measure over 90% and
with ListReader doing around 70% of the labeling work.
The ListReader approach to ontology population converts the
extraction and mapping problem into a sequential labeling
problem which it then solves by wrapper induction. Both the
A∗ Regex and HMM versions of ListReader perform efficiently
and outperform a state-of-the-art sequential labeler (the CRF)
in terms of efficiency (p < .01). The relative weakness of
the CRF is its requiring more training data than ListReader
requires to reach the same levels of accuracy. ListReader
better leverages the characteristics of list structure with a more
tailored machine learning approach.

Although ListReader performs well and outperforms the
CRF, there is still room for improvement and thus for much in-
teresting future work. Accuracy results are around 90%, which
is comparatively quite good, but the active learning component
of ListReader can likely be better—perhaps by leveraging the
precision of regular expressions in a synergistic combination
with the more flexible HMMs. These improvements should
also be valuable as we consider more complex lists: (1) lists
split by intervening text or page breaks (e.g. the lists in The
Ely Ancestry that split across page boundaries), (2) lists nested
within other lists (e.g. the child lists nested within the larger
family list in Figure 1), (3) lists with fields factored out of
each record, (e.g. the surname of the children in a family
factored out of the child lists in Figure 1), and (4) lists whose
records describe entities from distinct categories (e.g. business
and person addresses intermixed in a city directory).

Besides making ListReader more accurate and able to
process more complex lists, we plan to further reduce human

effort—not only limiting user involvement to labeling each
distinct field of a list only once, but for an entire collection
of lists, like all of the child lists in The Ely Ancestry. In a
bootstrapping effort, we plan to investigate a form of self-
supervised wrapper induction to reduce the cost of providing
training data for a collection of related lists. ListReader should
be able to recognize when it has seen a list similar to a
combination of one or more lists or list fragments it has
already processed and build both an ontology for the new list
and induce a wrapper without human intervention. Ideally, we
should benefit from accumulated knowledge resources by no
longer needing to create a form to generate the ontology nor to
fill in the form to label any of the fields of any of the records.

REFERENCES

[1] B. Adelberg. NoDoSE — a tool for semi-automatically extracting
structured and semistructured data from text documents. ACM SIGMOD
Record, 27:283–294, 1998.

[2] N. Ashish and C. Knoblock. Semi-automatic wrapper generation for
internet information sources. In Proceedings of the Second IFCIS
International Conference on Cooperative Information Systems, 1997.
COOPIS ’97, pages 160–169, 1997.

[3] M. S. Beach, W. Ely, and G. B. Vanderpoel. The Ely Ancestry. The
Calumet Press, New York, New York, USA, 1902.

[4] A. Belaı̈d. Retrospective document conversion: application to the library
domain. International Journal on Document Analysis and Recognition,
1:125–146, 1998.

[5] A. Belaı̈d. Recognition of table of contents for electronic library con-
sulting. International Journal on Document Analysis and Recognition,
4:35–45, 2001.

[6] D. Besagni and A. Belaı̈d. Citation recognition for scientific publi-
cations in digital libraries. In Proceedings of the First International
Workshop on Document Image Analysis for Libraries, pages 244–252,
Palo Alto, California, USA, 2004.

[7] D. Besagni, A. Belaı̈d, and N. Benet. A segmentation method for
bibliographic references by contextual tagging of fields. In Proceedings
of the Seventh International Conference on Document Analysis and
Recognition, pages 384–388, Edinburgh, Scotland, 2003.

[8] N. Dalvi, R. Kumar, and M. Soliman. Automatic wrappers for large
scale web extraction. Proceedings of the VLDB Endowment, 4:219–230,
2010.

[9] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational
tables from lists on the web. Proceedings of the VLDB Endowment,
2:1078–1089, 2009.

[10] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the web. Proceedings of the VLDB Endowment,
2:289–300, 2009.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[12] P. B. Heidorn and Q. Wei. Automatic metadata extraction from
museum specimen labels. In Proceedings of the 2008 International
Conference on Dublin Core and Metadata Applications, pages 57–68,
Berlin, Germany, 2008.

[13] N. Kushmerick. Wrapper induction for information extraction. PhD
thesis, University of Washington, Seattle, Washington, USA, 1997.

[14] K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction
from lists and tables in web sources. In IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, volume 98, 2001.

[15] A. K. McCallum. MALLET: a machine learning for language toolkit.
http://mallet.cs.umass.edu/, 2002.

[16] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 6(1):1–114, June 2012.

